Fighting Emerging Caspofungin-Resistant Candida Species: Mitigating Fks1-Mediated Resistance and Enhancing Caspofungin Efficacy by Chitosan

Faculty Veterinary Medicine Year: 2024
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Antibiotics MDPI Volume:
Keywords : Fighting Emerging Caspofungin-Resistant Candida Species: Mitigating    
Abstract:
Invasive candidiasis poses a worldwide threat because of the rising prevalence of antifungal resistance, resulting in higher rates of morbidity and mortality. Additionally, Candida species, which are opportunistic infections, have significant medical and economic consequences for immunocompromised individuals. This study explores the antifungal potential of chitosan to mitigate caspofungin resistance in caspofungin-resistant Candida albicans, C. krusei, and C. tropicalis isolates originating from human and animal sources using agar well diffusion, broth microdilution tests, and transmission electron microscope (TEM) analysis of treated Candida cells. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was performed to assess the expression of SAGA complex genes (GCN5 and ADA2) and the caspofungin resistance gene (FKS) in Candida species isolates after chitosan treatment. The highest resistance rate was observed to ketoconazole (80%) followed by clotrimazole (62.7%), fluconazole (60%), terbinafine (58%), itraconazole (57%), miconazole (54.2%), amphotericin B (51.4%), voriconazole (34.28%), and caspofungin (25.7%). Nine unique FKS mutations were detected, including S645P (n = 3 isolates), S645F, L644F, S645Y, L688M, E663G, and F641S (one isolate in each). The caspofungin minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values before chitosan treatment ranged from 2 to 8 mu g/mL and 4 to 16 mu g/mL, respectively. However, the MIC and MFC values were decreased after chitosan treatment (0.0625-1 mu g/mL) and (0.125-2 mu g/mL), respectively. Caspofungin MIC was significantly decreased (p = 0.0007) threefold following chitosan treatment compared with the MIC values before treatment. TEM analysis revealed that 0.5% chitosan disrupted the integrity of the cell surface, causing irregular morphologies and obvious aberrant changes in cell wall thickness in caspofungin-resistant and sensitive Candida isolates. The cell wall thickness of untreated isolates was 0.145 mu m in caspofungin-resistant isolate and 0.125 mu m in sensitive isolate, while it was significantly lower in chitosan-treated isolates, ranging from 0.05 to 0.08 mu m when compared with the cell wall thickness of sensitive isolate (0.03 to 0.06 mu m). Moreover, RT-qPCR demonstrated a significant (p < 0.05) decrease in the expression levels of histone acetyltransferase genes (GCN5 and ADA2) and FKS gene of caspofungin-resistant Candida species isolates treated with 0.5% chitosan when compared with before treatment (fold change values ranged from 0.001 to 0.0473 for GCN5, 1.028 to 4.856 for ADA2, and 2.713 to 12.38 for FKS gene). A comparison of the expression levels of cell wall-related genes (ADA2 and GCN5) between caspofungin-resistant and -sensitive isolates demonstrated a significant decrease following chitosan treatment (p < 0.001). The antifungal potential of chitosan enhances the efficacy of caspofungin against various caspofungin-resistant Candida species isolates and prevents the development of further antifungal resistance. The results of this study contribute to the progress in repurposing caspofungin and inform a development strategy to enhance its efficacy, appropriate antifungal activity against Candida species, and mitigate resistance. Consequently, chitosan could be used in combination with caspofungin for the treatment of candidiasis.
   
     
 
       

Author Related Publications

  • Yasmin Hessien Ibrahiem Hessien, "Virulotyping and genetic diversity of Aeromonas hydrophila isolated from Nile tilapia (Oreochromis niloticus) in aquaculture farms in Egypt", Elsevier, 2021 More
  • Yasmin Hessien Ibrahiem Hessien, "Use of Fourier transform infrared spectroscopy (FTIR) for rapid and accurate identification of Yeasts isolated from human and animals", Elsevier B.V. on beElsevier B.V. on behalf of Faculty of Veterinary Medicine, Cairo University.half of Faculty of Veterinary Medicine, Cairo Universit, 2013 More
  • Yasmin Hessien Ibrahiem Hessien, "Aflatoxin Producing Moulds And Aflatoxin Residues In Meat and Meat Products In Egypt", faculty of veterinarey medicine ,zagazig university, 2014 More
  • Yasmin Hessien Ibrahiem Hessien, "Propidium Monoazide Quantitative Real-Time Polymerase Chain Reaction for Enumeration of Some Viable but Nonculturable Foodborne Bacteria in Meat and Meat Products", Mary Ann Liebert, Inc., 2018 More
  • Yasmin Hessien Ibrahiem Hessien, "Diagnostic performance of molecular and conventional methods for identification of dermatophyte species from clinically infected Arabian horses in Egypt", Vet Dermatol, 2016 More

Department Related Publications

  • Marwa Ibrahim Ibrahiem Abdelhamied, "Impact of Nigella sativa and Clove Oils on Cell Wall Genes Expression in Multidrug Resistant Staphylococcus aureus", Zagazig, Egypt, 2016 More
  • Sarah Youssef Abdelgelil Ahmed, "Use of biological nano zinc as a feed additive in quail nutrition: biosynthesis, antimicrobial activity and its effect on growth, feed utilisation, blood metabolites and intestinal microbiota", taylor and francis, 2021 More
  • Sarah Youssef Abdelgelil Ahmed, "Tomato pomace as a non-traditional feedstuff: Productive and reproductive performance, digestive enzymes, blood metabolites and the deposition of carotenoids into egg yolk in quail breeders", Elsevier Inc, 2022 More
Tweet