Global gross nitrification rates are dominantly driven by soil carbon-to-nitrogen stoichiometry and total nitrogen

Faculty Agriculture Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: GLOBAL CHANGE BIOLOGY Wiley Volume:
Keywords : Global gross nitrification rates , dominantly driven    
Abstract:
Soil gross nitrification (GN) is a critical process in the global nitrogen (N) cycle that results in the formation of nitrate through microbial oxidation of ammonium or organic N, and can both increase N availability to plants and nitrous oxide emissions. Soil GN is thought to be mainly controlled by soil characteristics and the climate, but a comprehensive analysis taking into account the climate, soil characteristics, including microbial characteristics, and their interactions to better understand the direct and indirect controlling factors of GN rates globally is lacking. Using a global meta-analysis based on 901 observations from 330 N-15-labeled studies, we show that GN differs significantly among ecosystem types, with the highest rates found in croplands, in association with higher pH which stimulates nitrifying bacteria activities. Autotrophic and heterotrophic nitrifications contribute 63% and 37%, respectively, to global GN. Soil GN increases significantly with soil total N, microbial biomass, and soil pH, but decreases significantly with soil carbon (C) to N ratio (C:N). Structural equation modeling suggested that GN is mainly controlled by C:N and soil total N. Microbial biomass and pH are also important factors controlling GN and their effects are similar. Precipitation and temperature affect GN by altering C:N and/or soil total N. Soil total N and temperature drive heterotrophic nitrification, whereas C:N and pH drive autotrophic nitrification. Moreover, GN is positively related to nitrous oxide and carbon dioxide emissions. This synthesis suggests that changes in soil C:N, soil total N, microbial population size, and/or soil pH due to anthropogenic activities may influence GN, which will affect nitrate accumulation and gaseous emissions of soils under global climate and land-use changes.
   
     
 
       

Author Related Publications

  • Ahmed Salah Abdelkarim ebrahim, "Changes in phosphorus fractions in response to long-term nitrogen fertilization in loess plateau of China", ُELSEVIR, 2021 More
  • Ahmed Salah Abdelkarim ebrahim, "Genome-Wide Identification and Expression Analysis of Metal Tolerance Protein Gene Family in Medicago truncatula Under a Broad Range of Heavy Metal Stress", Frontiers, 2021 More
  • Ahmed Salah Abdelkarim ebrahim, "Interplaying roles of silicon and proline effectively improve salt and cadmium stress tolerance in Phaseolus vulgaris plant", ELSEVIER, 2019 More
  • Ahmed Salah Abdelkarim ebrahim, "Role of Nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review", Frontiers, 2022 More
  • Ahmed Salah Abdelkarim ebrahim, "تأثير التسميد النيتروجيني وإضافة الهيومات على امتصاص النيتروجين بواسطة نبات القمح", Zagazig Journal of Soil and Water Science, 2015 More

Department Related Publications

  • Ayman Mahmoud Helmy Mohamed Abozied, "RESPONSE OF SEED IRRADIATION WITH GAMMA RAY, N-FERTILIZATION AND BIO FERTILIZATION OF BARLEY (Hordeum vulgare L.) GROWN ON A SAND SOIL", J. Soil Sci. and Agric. Eng., Mansoura Univ, 2014 More
  • Mohammed Ahmed Said Mettwally, "Evaluation fertility of some soils using chemical and thermodynamic method", مجلة الزقازيق للبحوث الزراعية, 2016 More
  • Mohamed Kamal Abdelfatah Mohamed, "اتجاه لاستصلاح وتحسين خصوبة الأراضي المتأثرة بالأملاح", Cairo, A.R.E. : National Information and Documentation Centre, 2013 More
  • Sarah Alsayed Elsayed Elsayed Foda, "The effects of the conjunctive use of compost tea and inorganic fertilization on radish (Raphanus sativus L) plant nutrient uptake and soil microorganisms", المجلة المصرية لعلوم الاراضى, 2016 More
  • Mohammed Saied Dosoki Abohashim, "Impact of land-use and land-management on the water infiltration capacity of soils on a catchment scale", , GermanyISBN: 978-3-930037-74-2 , Julius Kühn Institute (JKI, 2011 More
Tweet