Usages of Spark Framework with Different Machine Learning Algorithms

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Computational Intelligence and Neuroscience Hindawi Volume:
Keywords : Usages , Spark Framework with Different Machine    
Abstract:
Nowadays, ocean observation technology continues to progress, resulting in a huge increase in marine data volume and dimensionality. This volume of data provides a golden opportunity to train predictive models, as the more the data is, the better the predictive model is. Predicting marine data such as sea surface temperature (SST) and Significant Wave Height (SWH) is a vital task in a variety of disciplines, including marine activities, deep-sea, and marine biodiversity monitoring. The literature has efforts to forecast such marine data; these efforts can be classified into three classes: machine learning, deep learning, and statistical predictive models. To the best of the authors’ knowledge, no study compared the performance of these three approaches on a real dataset. This paper focuses on the prediction of two critical marine features: the SST and SWH. In this work, we proposed implementing statistical, deep learning, and machine learning models for predicting the SST and SWH on a real dataset obtained from the Korea Hydrographic and Oceanographic Agency. Then, we proposed comparing these three predictive approaches on four different evaluation metrics. Experimental results have revealed that the deep learning model slightly outperformed the machine learning models for overall performance, and both of these approaches greatly outperformed the statistical predictive model.
   
     
 
       

Author Related Publications

  • Ahmed Salah Mohamed Mostafa, "Artificial Intelligence and Machine Learning-Driven Decision-Making", Hindawi, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Efficient index-independent approaches for the collective spatial keyword queries", elsevier, 2021 More
  • Ahmed Salah Mohamed Mostafa, "A robust UWSN handover prediction system using ensemble learning", MDPI, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Price Prediction of Seasonal Items Using Machine Learning and Statistical Methods", Tech Science Press, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Lazy-Merge: A Novel Implementation for Indexed Parallel K-Way In-Place Merging", IEEE, 2016 More

Department Related Publications

  • Abdallah Gamal abdallah mahmoud, "A Group Decision Making Framework Based on Neutrosophic TOPSIS Approach for Smart Medical Device Selection", Springer US, 2019 More
  • Ibrahiem Mahmoud Mohamed Elhenawy, "Improving crisis events detection using distilbert with hunger games search algorithm", MDPI, 2022 More
  • Abdallah Gamal abdallah mahmoud, "Modern Soft Computing: Techniques and Applications", 2024 More
  • Ibrahiem Mahmoud Mohamed Elhenawy, "Metaheuristic for Solving Global Optimization Problems", 2024 More
Tweet