Artificial Intelligence and Machine Learning-Driven Decision-Making

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Computational Intelligence and Neuroscience Hindawi Volume:
Keywords : Artificial Intelligence , Machine Learning-Driven Decision-Making    
Abstract:
Nowadays, ocean observation technology continues to progress, resulting in a huge increase in marine data volume and dimensionality. This volume of data provides a golden opportunity to train predictive models, as the more the data is, the better the predictive model is. Predicting marine data such as sea surface temperature (SST) and Significant Wave Height (SWH) is a vital task in a variety of disciplines, including marine activities, deep-sea, and marine biodiversity monitoring. The literature has efforts to forecast such marine data; these efforts can be classified into three classes: machine learning, deep learning, and statistical predictive models. To the best of the authors’ knowledge, no study compared the performance of these three approaches on a real dataset. This paper focuses on the prediction of two critical marine features: the SST and SWH. In this work, we proposed implementing statistical, deep learning, and machine learning models for predicting the SST and SWH on a real dataset obtained from the Korea Hydrographic and Oceanographic Agency. Then, we proposed comparing these three predictive approaches on four different evaluation metrics. Experimental results have revealed that the deep learning model slightly outperformed the machine learning models for overall performance, and both of these approaches greatly outperformed the statistical predictive model.
   
     
 
       

Author Related Publications

  • Ahmed Salah Mohamed Mostafa, "Usages of Spark Framework with Different Machine Learning Algorithms", Hindawi, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Efficient index-independent approaches for the collective spatial keyword queries", elsevier, 2021 More
  • Ahmed Salah Mohamed Mostafa, "A robust UWSN handover prediction system using ensemble learning", MDPI, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Price Prediction of Seasonal Items Using Machine Learning and Statistical Methods", Tech Science Press, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Lazy-Merge: A Novel Implementation for Indexed Parallel K-Way In-Place Merging", IEEE, 2016 More

Department Related Publications

  • Hosam Rada mohamed abdel megeed hawash, "Federated Threat-Hunting Approach for Microservice-Based Industrial Cyber-Physical System", IEEE, 2022 More
  • Hosam Rada mohamed abdel megeed hawash, "Explainability of artificial intelligence methods, applications and challenges: A comprehensive survey", Elsevier Inc, 2022 More
  • Hosam Rada mohamed abdel megeed hawash, "STLF-Net: Two-stream deep network for short-term load forecasting in residential buildings", Elsevier, 2022 More
  • Mustafa Khamis Baz Ramadan, "An Efficient method for choosing most suitable cloud storage provider reducing top security risks based on multi-criteria neutrosophic decision making", An Efficient method for choosing most suitable cloud storage provider reducing top security risks based on multi-criteria neutrosophic decision making, 2017 More
  • Ibrahiem Mahmoud Mohamed Elhenawy, "Applying apache spark on streaming big data for health status prediction", TECH SCIENCE PRESS, 2022 More
Tweet