Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
Artificial Intelligence and Machine Learning-Driven Decision-Making
Faculty
Computer Science
Year:
2021
Type of Publication:
ZU Hosted
Pages:
Authors:
Ahmed Salah Mohamed Mostafa
Staff Zu Site
Abstract In Staff Site
Journal:
Computational Intelligence and Neuroscience Hindawi
Volume:
Keywords :
Artificial Intelligence , Machine Learning-Driven Decision-Making
Abstract:
Nowadays, ocean observation technology continues to progress, resulting in a huge increase in marine data volume and dimensionality. This volume of data provides a golden opportunity to train predictive models, as the more the data is, the better the predictive model is. Predicting marine data such as sea surface temperature (SST) and Significant Wave Height (SWH) is a vital task in a variety of disciplines, including marine activities, deep-sea, and marine biodiversity monitoring. The literature has efforts to forecast such marine data; these efforts can be classified into three classes: machine learning, deep learning, and statistical predictive models. To the best of the authors’ knowledge, no study compared the performance of these three approaches on a real dataset. This paper focuses on the prediction of two critical marine features: the SST and SWH. In this work, we proposed implementing statistical, deep learning, and machine learning models for predicting the SST and SWH on a real dataset obtained from the Korea Hydrographic and Oceanographic Agency. Then, we proposed comparing these three predictive approaches on four different evaluation metrics. Experimental results have revealed that the deep learning model slightly outperformed the machine learning models for overall performance, and both of these approaches greatly outperformed the statistical predictive model.
Author Related Publications
Ahmed Salah Mohamed Mostafa, "Usages of Spark Framework with Different Machine Learning Algorithms", Hindawi, 2021
More
Ahmed Salah Mohamed Mostafa, "Efficient index-independent approaches for the collective spatial keyword queries", elsevier, 2021
More
Ahmed Salah Mohamed Mostafa, "A robust UWSN handover prediction system using ensemble learning", MDPI, 2021
More
Ahmed Salah Mohamed Mostafa, "Price Prediction of Seasonal Items Using Machine Learning and Statistical Methods", Tech Science Press, 2021
More
Ahmed Salah Mohamed Mostafa, "Lazy-Merge: A Novel Implementation for Indexed Parallel K-Way In-Place Merging", IEEE, 2016
More
Department Related Publications
Ahmed Salah Mohamed Mostafa, "Cluster-Distribute-Align-Merge: A General Algorithm to Speed Up Multiple Sequence Alignment on Multi-Core Computers", Journal of Computational and Theoretical Nanoscience, 2014
More
Zaher Awad Aboelenieen Elhendy, "NEW APPROACH TO IMAGE EDGE DETECTION BASED ON QUANTUM ENTROPY", JOURNAL OF RUSSIAN LASER RESEARCH, 2016
More
Sarah AbdelRazek Ahmed AbdulHameid, "Cloud Storage Forensics: Survey", International Journal of Engineering Trends and Technology (IJETT), 2017
More
Doaa El-Shahat Barakat Mohammed, "A modified hybrid whale optimization algorithm for the scheduling problem in multimedia data objects", Wiley online library, 2019
More
Abdallah Gamal abdallah mahmoud, "A novel model for evaluation Hospital medical care systems based on plithogenic sets", Elsevier B.V., 2019
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف