An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Energy Conversion and Management Pergamon Volume: 227
Keywords : , efficient teaching-learning-based optimization algorithm , parameters identification    
Abstract:
Accurate and efficient parameter estimation of the photovoltaic (PV) models is considered a dispensable process to simulate the PV systems. Therefore, many meta-heuristic algorithms have been recently proposed, but the parameters obtained are not as accurate and reliable as is desired, particularly when the PV models have a significant number of unknown parameters. Therefore, in this paper, a modified teaching–learning based optimization (MTLBO) approach is suggested to accurately and reliably extract the unknown parameters of PV models. Our modification to TLBO divides each of the teaching and learning phases into three levels: low, medium, and high according to the scoring level of each learner. The scoring level of each one is measured based on comparison between the fitness of the updated learner and the current leaner; if the fitness of the updated is better, the scoring level is reset to 0, and otherwise, it is increased by 1. Finally, to observe the efficacy of MTLBO, it is investigated on five PV cells and modules: single diode model and double diode model in case of RTC France, Photowatt-PWP201 module, STM6-40/36 module, and STP6-120/36 module. For those PV cells and modules, our proposed could respectively come true the following average outcomes: 0.0009860219, 0.0009825026, 0.0024250749, 0.0017298137, and 0.0166006031. To check the efficacy of MTLBO, it is compared with a number of recent and well-known algorithms. The experimental results show the superiority of the proposed algorithm, especially on double diode model.
   
     
 
       

Author Related Publications

    Department Related Publications

    • Saber Mohamed, "Self-adaptive Mix of Particle Swarm Methodologies for Constrained Optimization", ELSEVIER, 2014 More
    • Saber Mohamed, "Testing United Multi-Operator Evolutionary Algorithms on The CEC2014 Real-Parameter Numerical Optimization", IEEE, 2014 More
    • Saber Mohamed, "GA with a New Multi-Parent Crossover for Constrained Optimization", IEEE, 2011 More
    • Eman samir hasan sayed, "Decision Making Assessment for Site Selection Using the AHP and TOPSIS Methods", Statistical studies institution, Cairo University, Egypt, 2007 More
    • Israa Abdel Ghaffar Salem Mohammed, "Estimating Bed Requirements for a Pediatric Department in a University Hospital in Egypt", Modern Management Science & Engineering, 2016 More
    Tweet