Aspergillus spp. eliminate Sclerotinia sclerotiorum by imbalancing the ambient oxalic acid concentration and parasitizing its sclerotia

Faculty Agriculture Year: 2020
Type of Publication: ZU Hosted Pages: 5265–5279
Authors:
Journal: Environmental Microbiology John Wiley & Sons Ltd Volume: 22
Keywords : Aspergillus spp. eliminate Sclerotinia sclerotiorum , imbalancing    
Abstract:
Sclerotinia sclerotiorum, a pathogen of more than 600 host plants, secretes oxalic acid to regulate the ambient acidity and provide conducive environment for pathogenicity and reproduction. Few Aspergillus spp. were previously proposed as potential biocontrol agents for S. sclerotiorum as they deteriorate sclerotia and prevent pathogen’s overwintering and initial infections. We studied the nature of physical and biochemical interactions between Aspergillus and Sclerotinia. Aspergillus species inhibited sclerotial germination as they colonized its rind layer. However, Aspergillus-infested sclerotia remain solid and viable for vegetative and carpogenic germination, indicating that Aspergillus infestation is superficial. Aspergillus spp. of section Nigri (Aspergillus japonicus and Aspergillus niger) were also capable of suppressing sclerotial formation by S. sclerotiorum on agar plates. Their culture filtrate contained high levels of oxalic, citric and glutaric acids comparing to the other Aspergillus spp. tested. Exogenous supplementation of oxalic acid altered growth and reproduction of S. sclerotiorum at low concentrations. Inhibitory concentrations of oxalic acid displayed lower pH values comparing to their parallel concentrations of other organic acids. Thus, S. sclerotiorum growth and reproduction are sensitive to the ambient oxalic acid fluctuations and the environmental acidity. Together, Aspergillus species parasitize colonies of Sclerotinia and prevent sclerotial formation through their acidic secretions.
   
     
 
       

Author Related Publications

  • Osama Othman Abdelaziz, "Soybean ⊎-conglycinin and catfish cutaneous mucous p22 glycoproteins deteriorate sporangial cell walls of Pseudoperonospora cubensis and suppress cucumber downy", Wiley, 2021 More
  • Osama Othman Abdelaziz, "Silicon Dioxide Nanoparticles Induce Innate Immune Responses and Activate Antioxidant Machinery in Wheat Against Rhizoctonia solani", MDPI, 2021 More
  • Osama Othman Abdelaziz, "Soybean ⊎-conglycinin and catfish cutaneous mucous p22 glycoproteins deteriorate sporangial cell walls of Pseudoperonospora cubensis and suppress cucumber downy mildew", Wiley, 2021 More
  • Osama Othman Abdelaziz, "Functional diversification upon leader protease domain duplication in the Citrus tristeza virus genome: Role of RNA sequences and the encoded proteins", ElSEVIER, 2018 More
  • Osama Othman Abdelaziz, "A 5'-proximal region of the Citrus tristeza virus genome encoding two leader proteases is involved in virus superinfection exclusion", ELSEVIER, 2016 More

Department Related Publications

  • Mohamed Ali Mohamed Saadeldeen, "Role of organic amendments in controlling bacterial wilt of some solanaceous plants under artificial inoculation conditions.", Zagazig J. Agric. Res.,, 2017 More
  • Mohamed Ali Mohamed Saadeldeen, "Management of peanut Cercospora leaf spot using resistant cultivars and inducer resistance chemicals.", Zagazig J. Agric. Res., 2019 More
  • Mohamed Ali Mohamed Saadeldeen, "Molecular cloning and analysis of apple HcrVf resistance gene paralogs in a collection of related Malus species", Springer, 2012 More
  • Osama Othman Abdelaziz, "Soybean ⊎-conglycinin and catfish cutaneous mucous p22 glycoproteins deteriorate sporangial cell walls of Pseudoperonospora cubensis and suppress cucumber downy", Wiley, 2021 More
  • Osama Othman Abdelaziz, "Silicon Dioxide Nanoparticles Induce Innate Immune Responses and Activate Antioxidant Machinery in Wheat Against Rhizoctonia solani", MDPI, 2021 More
Tweet